Residual-free bubbles for advection-diffusion problems: the general error analysis
نویسندگان
چکیده
We develop the general a priori error analysis of residual-free bubble nite element approximations to non-self-adjoint elliptic problems of the form ("A+C)u = f subject to homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic operator, C is a skew-symmetric rst-order diierential operator, and " is a positive parameter. Optimal-order error bounds are derived in various norms, using piecewise polynomial nite elements of degree k 1.
منابع مشابه
Global and Local Error Analysis for the Residual-Free Bubbles Method Applied to Advection-Dominated Problems
We prove the stability and a priori global and local error analysis for the residual-free bubbles finite element method applied to advection dominated advection-diffusion problems.
متن کاملA robust a posteriori estimator for the Residual-free Bubbles method applied to advection-diffusion problems
متن کامل
Discontinuous Galerkin Methods for Advection-diffusion-reaction Problems
We apply the weighted-residual approach recently introduced in [7] to derive dis-continuous Galerkin formulations for advection-diffusion-reaction problems. We devise the basic ingredients to ensure stability and optimal error estimates in suitable norms, and propose two new methods. 1. Introduction. In recent years Discontinuous Galerkin methods have become increasingly popular, and they have ...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 85 شماره
صفحات -
تاریخ انتشار 2000