Residual-free bubbles for advection-diffusion problems: the general error analysis

نویسندگان

  • Franco Brezzi
  • L. Donatella Marini
  • Endre Süli
چکیده

We develop the general a priori error analysis of residual-free bubble nite element approximations to non-self-adjoint elliptic problems of the form ("A+C)u = f subject to homogeneous Dirichlet boundary condition, where A is a symmetric second-order elliptic operator, C is a skew-symmetric rst-order diierential operator, and " is a positive parameter. Optimal-order error bounds are derived in various norms, using piecewise polynomial nite elements of degree k 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global and Local Error Analysis for the Residual-Free Bubbles Method Applied to Advection-Dominated Problems

We prove the stability and a priori global and local error analysis for the residual-free bubbles finite element method applied to advection dominated advection-diffusion problems.

متن کامل

Discontinuous Galerkin Methods for Advection-diffusion-reaction Problems

We apply the weighted-residual approach recently introduced in [7] to derive dis-continuous Galerkin formulations for advection-diffusion-reaction problems. We devise the basic ingredients to ensure stability and optimal error estimates in suitable norms, and propose two new methods. 1. Introduction. In recent years Discontinuous Galerkin methods have become increasingly popular, and they have ...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2000